
1

BASIC8 UTILITIES

by M.D.Pelletier

Table of Contents

INTRODUCTION
Preface 2

System Requirements 2

Atari DOS 2

OS/A+ DOS 2

Cassette Based System 2

Overview of BASIC8 3

Arguments, Syntax 4

COMMAND PROCESSOR
Command Entry 5

Page Zero Sharing 5

Disable BASIC8 5

SOFTKEYS
Defining SOFTKEYS 6

Using SOFTKEYS 6

Display All SOFTKEYS 6

Suggested Use and Notes 6

COMMANDS
Command Summary 7

= (hex/dec) 8

ASM 9

AUTO 11
BLOAD 12
BS AVE 13
COPY 14
DEL 15
DIR 16
DISKPEEK 17

DISKPOKE 18
FIND 19
FORMAT 20
HELP 21
LOCK 22
MEM 2 3

PSCREEN 24
PURGE 25
RENAME : 26
RENUM 27
SOFT 28
STOR 29
UNLOCK 30
VAR 31

ERROR CODES 32

A Reference Manual for

BASIC8 Utilities

Utilities designed to aid BASIC Programming.

The programs, disks and manuals comprising
BASIC8 are Copyright (c) 1983 by

Michael D. Pelletier, of
3714-140th SE, Bellevue WA

All rights reserved. Reproduct
this work without permission of

ions
the

or translations of any part of
copyright owner is unlawful.

TRADEMARKS

Atari is the trademark of Atari, Inc., Sunnyvale, CA
OS/A+ is a trademark of Optimized Systems Software, Inc Cupertino

,

CA

BASIC8 Utility Routines -1- VI. 2(8MAR84)

INTRODUCTION
Preface

BASIC8 is a series of 23 utility programs intended to aid the
programmer in entering and debugging Atari BASIC programs. The
design is that the computer should serve as a tool, not a hinderance
in debugging a program. BASIC8 is written entirely in machine
language

.

System Requirements

BASIC8 is intended to be used with the Atari BASIC ROM, A minimum of
32K (24K for cassette) is recommended. It uses about 7000 bytes of
memory (6660 for cassette version), loads itself into low memory
(MEMLO) and protects itself from BASIC and SYSTEM RESET. MEMLO
(location 743 & 744) is reset to point just above BASIC8.

BASIC8 loads into memory starting at $4000 (page six of memory is
used at load time, the cassette version loads directly to $700).
MEMLO is then examined and BASIC8 is relocated in memory starting at
the first page boundary above MEMLO. Thus if MEMLO is $1CFC (7420)
at load time BASIC8 will relocate itself to start at $1D00 (7424)
and will reset MEMLO to $384F (14415).

If you wish BASIC8 to load at a different location (other than
default MEMLO) you may re-define MEMLO prior to loading BASIC8. For
example if you type "POKE 743,0:P0KE 744,48" followed by loading
BASIC8 would result in BASIC8 starting at $3000 (48*256=12288). The
highest MEMLO allowed is $4000 (16384), "POKE 743,0:P0KE 744,64".
Remember that MEMLO is always reset to just above BASIC8.

Using BASIC8

Atari DOS
Power up the disk, monitor and computer in the "normal" fashion.
Type "DOS", when the menu comes up type "L" (to select the load
binary file option) then type "BASIC8.COM" for the requested
filename

.

Alternately you can rename "BASIC8.COM" to " AUT0RUN . SYS" in which
case BASIC8 will load automatically at boot time.

0S/A+ DOS
Power up the disk, monitor and computer in the "normal" fashion
with DOS booted. Type "DOS" then type "BASIC8" and BASIC8 will be
loaded and activated.

Cassette Based System
Power up the monitor, hold down the START key and power up the
computer. One audible 'beep* should be heard. Set up the
cassette with BASIC8 and press the PLAY button on the cassette.
Press the RETURN key on the computer and wait for BASIC8 to load
and activate

.

BASIC8 Utility Routines -2- VI. 2(8MAR84)

Overview of BASIC8
INTRODUCTION

The commands can be broken down into four types:
1 . BASIC Programming ASM

AUTO
COPY
DEL
FIND
RENUM
SOFT
VAR

2. Disk CIO Functions DIR
FORMAT
LOCK
PURGE
RENAME
UNLOCK

3. Memory/Disk (map, patch) = (hex/dec)
BLOAD
BSAVE
DISKPEEK
DISKPOKE
MEM
STOR

4. GENERAL HELP
PSCREEN

BASIC8 gets its name from the eight commands listed above which are
most useful for 'BASIC Programming'.

BASIC8 defines and uses an "M" driver to which it writes and
examines data in memory.

BASIC8 Utility Routines -3- VI. 2(8MAR8A)

INTRODUCTION
Arguments, Syntax

The conventions used in this booklet are as follows:

1. Capital lettters denote commands, parameters etc. which must be
typed in exactly as shown (i.e. DIR, VAR).

2. Lower case letters specify items which may be used (parameters,
options etc.). These types of items are as follows:

number
begin
end
increment
filename
oldname
newname
start
stop
sectorf
disk dev#
string
device!
Dn
s tar trow
s toprow
map

number , 0 to
number , 0 to
number , 0 to
number, 1 to
*see below
f ile-specif ier ,

file-specifier,

65535
32767, BASIC line number
32767, BASIC line number
32767, between BASIC lines

see
see

below
below

address
address

number, 0 to 65535, memory
number, 0 to 65535, memory
number, 1 to 720, disk sector number
number, 1 to 4

a set of characters (to search for)
device letter, a number, a colon (ie.
(same as device!, except disk only)
number, 0 to 23, screen row
number, 0 to 23, screen row
either number(s) or a string literal

Dl :)

3. Items in parentheses indicate optional items, ie. (, begin).

4. All numerics that are BASIC8 parameters may be entered as
decimal OR hexadecimal numbers (inter-mixing with multiple numbers
is allowed). Any number beginning with a "$" will be interpreted
as hex otherwise the number will be decimal.

*The following convention is used for filenames within this booklet:

Filename

Example

:

= device letter, device number, a colon then
a file-specifier

D1:UTIL.C0M device letter="D"
device number="l", followed by
file-specif ier ="UTIL.C0M"

a colon

Filenames usually refer to disk files, however cassette files are
supported by BASIC8.

BASIC8 Utility Routines -4- VI. 2(8MAR84)

COMMAND PROCESSOR
COMMAND PROCESSOR
Command Entry

Commands are typed in similar to BASIC direct commands (ie. RUN,
LIST) with the following restrictions:

1, Commands must be left justified; no leading blanks,
2. Multiple commands (separated by semicolons) are not supported.
Use single command statements.

Page Zero Sharing

Memory locations $CB through $D2 (unused by BASIC) are left
unchanged by BASIC8 and page six is not used by BASIC8 . This is of
note to programmers who use machine language programs with BASIC.

Disable BASIC8

BASIC8 works by intercepting all data received by the screen editor
and examining it to see if it is a BASIC8 command. It does not know
if a BASIC program is running.

NOTE!
If your application program uses the screen editor for any data
entry (ie. INPUT A$), BASIC8 will intercept it if the COMMAND
PROCESSOR interprets it as a BASIC8 command.

After intercepting the screen editor data, BASIC8 first examines
memory location 1008 ($3F0). If a zero value is found then BASIC8
continues, if a non-zero value is found than BASIC8 returns control
to BASIC. You may disable BASICS in one of two ways:

1. From the keyboard type CTRL-SHIFT-ESC (hold down both the CTRL
and the SHIFT buttons then strike the ESC key). This keystroke
toggles between disable BASIC8 and enable BASIC8.
2. Programatically , to disable "POKE 1008, 1

" , to enable "POKE
1008,0".

The BREAK key will function normally with Disk/Printer CIO functions
however it will not work with several BASIC8 routines. BASIC8
sometimes disables the keyboard while processing. Some commands
allow you to abort by pressing a consol key (ie. the START key).

NOTE!
BASIC8 is automatically disabled when you invoke the "DOS"
command. It is not re-enabled upon return to BASIC, you must
manually enable it.

CAUTION

!

Do NOT enable BASIC8 while within the Atari DOS Menu program or
it's ga-ga time (the system will hang).
If SYSTEM RESET is struck while in DOS or before enabling BASIC8
after returning from DOS then BASIC8 will be disabled and you will
not be able to re-enable it (except by re-booting it).

BASIC8 Utility Routines -5- VI. 2(8MAR84)

SOFTKEYS
SOFTKEYS

Every key (other than operating keys CTRL, SHIFT and BREAK) can be
assigned a string of up to 120 characters. This booklet will limit
the SOFTKEY discussion to the "number" keys (1,2, ...,0), and the
alpha keys (A,B,...,Z). The intention of SOFTKEYS is to have
pre-defined assignments which improve programming speed an accuracy.

Defining SOFTKEYS

To define a SOFTKEY, type the ESC key then while holding down the
START button type the key you wish to define. The current string
assigned to that key (if any) will be displayed, followed by "Define
Key#l" (in this case assume key 1 is to be defined). The computer
is now waiting for you to type the new string assignment for the
chosen SOFTKEY. You may use all of the screen editor EDIT
capabilities. When the string looks good to you strike the RETURN
key and the softkey is now defined. If you have a large BASIC
program in memory this may take a few seconds. If you select to
define a softkey but wish to abort type either the BREAK key or the
CTRL-3 keystroke.
Note that SOFTKEYS are disabled while defining a SOFTKEY.

Using SOFTKEYS

To use a SOFTKEY, merely press the SOFTKEY you wish to use while
holding down the START button. The string assigned to that SOFTKEY
will be printed to the screen.

Display All SOFTKEYS

To display all SOFTKEYS currently defined type CTRL-SHIFT-<space>
(hold both the CTRL and the SHIFT keys d own then press the space
bar). For each key currently defined the key name followed by one
space and then the definition for that key will be displayed. You
may abort the listing by pressing a consol key (ie. START key). The
SOFTKEYS will be sequenced in order of their keycode value as from
the POKEY chip (for instance numerics will sequence as follows:
4,3,6,5,2,1,9,0,7,8).

Suggested Use and Notes

I recommend using the numeric SOFTKEYS for current working strings
which may change frequently. You can paste a piece of paper just
above the keys and quickly jot down their current definitions. FOr
the alpha keys you might assign most used commands/ functions and
leave them (for the most part) alone. You can save SOFTKEYS on
file, and with continued use you'll know thier definitions by
memory. Bear in mind that each byte used in a SOFTKEY definition
uses one byte of free memory.

BASIC8 Utility Routines -6- VI. 2(8MAR84)

Command Summary

COMMAND PARAMETERS DESCRIPTION

number : displays numbers, "decimal , hex" form

ASM — i enter mini assembler /disassembler

AUTO (begin)(, increment) : executes auto line numbers (BASIC)

BLOAD filename : binary load to memory of exist, file

BSAVE filename, start, stop: bin. mem. save s tar t->s top , to a file

COPY begin, end, to, (,by): copy BASIC lines->diff seq. location

DEL begin (, end) : deletes BASIC program lines

DIR (Dn)(: file-specifier)

:

displays disk directory information

DISKPEEK sectorf , (,disk dev#): reads/displays given disk sector

DISKPOKE sector! , (,disk dev#): writes/displays given disk sector

FIND " " (begin)(,end)(,l): lists all lines with search string

FORMAT devicel : formats a disk

HELP (type) : displays commands/functions avail.

LOCK filename : protects an existing file on disk

MEM (start) : displays memory in hex/alpha form

PSCREEN (startrow)(,stoprow) : prints hardcopy of screen, GR.O

PURGE filename : deletes an existing disk file

RENAME Dn:oldname,newname : renames existing disk file(s)

RENUM (begin)(, increment) : renumbers seq. lines of BASIC prog.

SOFT f ilename (, Sa ve) : loads/saves SOFTKEY data files

STOR startaddress ,map : stores numbers/ strings to memory

UNLOCK filename : unprotects an existing file on disk

VAR displays all variables used in prog.

To DISABLE/ENABLE BASIC8 hold both CTRL and SHIFT and type ESC key
SOFTICEYS: use - hold START key and press the desired SOFTKEY

define - press ESC key, hold START and press desired key
display- hold both CTRL and SHIFT and press the space bar

BASIC8 Utility Routines -7- VI. 2(8MAR84)

=hex/ decimal converter

Command

Purpose display number in decimal and hexadecimal form

Form =number

Argument a decimal number (or hex if preceded with a "$")

Description

This command allows you to convert numbers quickly from decimal to
hexadecimal (and vice-versa). Hexadecimal numbers must be preceded
by a "$", there must be no spaces between the "$" and the following
hexadecimal number.

Example: =$2E7
743 $02E7

o r : = 743
743 $02E7

BASIC8 Utility Routines -8- VI. 2(8MAR84)

ASseMbler

Command

Purpose

Form

Arguments

Description

ASM

assembles & disassembles in memory

ASM

(none

)

The assembler /disassembler allows instant assembly of instructions
directly to memory and immediate disassembly of instructions in
memory, Normal usage provides flexible address prompting, you are
not required to remain on the prompted line and all EDIT keys may be
used normally. A simple labeling capability of up to 16 labels is
provided. You may use a label for any operand in an instruction.

When you enter the assembler /disassembler

:

1. The screen is cleared and reset to graphics mode 0.
2. The user is in the assembler /disassembler Command Interpreter.
3. The 'logical line' becomes one line (maximum of 38 characters).
4. All numerics are interpreted as 16 bit positive numbers 0 to
FFFF, one to four hexadecimal digits. Overflow isn't detected or
reported as an error. If a one byte numeric is expected then only
the low byte is used
5. Standard MOS Technology mnemonics are used for opcodes. It is
assumed that the user is familiar with assembly language

The assembler /disassembler Command Interpreter:
The first nonblank character is always the "command"
are one character long and there are only four valid
the assembler/ disassembler:

Command : Name : Meaning

Command s

commands in

/

c omma
dot
dash
slant

assemble with next address prompt disabled
assemble with next address prompt enabled
disassemble with next address prompting
exit to BASIC

DISASSEMBLE

To d isassemble type a dash followed by the address to start
disassembling and a RETURN. If you omit the address, disassembly
will start at the program counter (PC) last address. Twenty
instructions will be disassembled to the screen, the program will
halt with the last line a dash followed by the next address to
disassemble. At any time you may cursor up to an instruction and
reassemble changes to the listing.
Example

:

-600 (this will commence disassembly at hex 600)
,0600 LDX #4 ; A2 04

BASIC8 Utility Routines -9- VI. 2(8MAR84)

ASSEMBLE
ASseMbler

To assemble type a dot followed by an address, an instruction and a
RETURN. This will be assembled, and you will be prompted with the
next address. At any time you may cursor up, EDIT and re-assemble
an instruction. If you type only a dot and a RETURN, you will be
prompted with the current PC. The ' form' of the entered line to
assemble is as follows:

.ADDRESS (LABEL) OPCODE (OPERAND) (ie .0600 LDX #4)

Note the label is optional and the OPERAND is optional or as
required by the addressing mode of the OPCODE.

There are three pseudo-ops that may be used while assembling:
this skips one byte, leaves memory unchanged
inserts 1 byte address at the current PC
inserts (multi byte) literal at the current PC

\/ \/ \r

BYT address
ASC literal

Note, the immediate OPERAND (ie. #41) may be satisfied
ATASCII character in the following form: I'char (pound
apostrophe, followed with the character). for example
will assemble to "LDX #41".

with an
sign ,

"LDX #
T A

"

LABELS

Labels are entered by enabling the inverse character key (the Atari
key) and typing a single digit alpha A to P. Labels may be used
anywhere (while assembling) that a numeric 1 or 2 byte address (or
immediate value) is required in the OPERAND.
A label is resolved by typing that label in front of the OPCODE of
an instruction. If a label remains unresolved when exiting the
assemble mode, the user will be prompted to define the label. A
valid entry will be required, to abort strike the break key. There
are 16 valid labels allowed (inverse A to P), each label may have a
maximum of 8 unresolved references.
The assembler uses addresses $3C0 to $47F to track unresolved label
references

.

ERRORS

Any error number less than 40 (while in the assembler) denotes the
position along the entered line where the error was encountered
(starting with position 0). any error number greater than or equal
to 40 has the following meaning:

40 parenthesis not closed
41 address parameter required, but not found
42 branch address out of bounds
43 zero page indirect X or Y not specified
44 — (not used)

—

45 maximum of 8 unresolved label references exceeded
46 too many parameters in OPERAND
47 bad instruction generated

BASIC8 Utility Routines -10- VI. 2(8MAR84)

AUTOmatic line numbering

Command

Purpose

Form

Arguments

Description

AUTO

execute automatic line numbering for BASIC programing

AUTO (begin) (, increment)

begin - optional, starting line number for auto-
numbering, default= last line + 10

increment- value between lines for
auto-numbering, default= 10

This command will enter the line numbers automatically,
useful when typing in a new BASIC program.

this is

After typing this command you are in 'Auto-Number 1 mode. When you
type the first character for a new BASIC program statement you will
see the line number printed to the screen followed by the character
you just typed. the line number is not printed to the screen until
after the first character of the new logical line is typed. If you
type a 'RETURN 1 with nothing else keyed in you will exit the
'Auto-Number 1 mode.

NOTE

1. When you type this command you will be in
until you type a 'RETURN' at the beginning of
with nothing else keyed in.
2. EDIT keys may be used normally you are not
on the line where the auto-number was printed
3. If you do not specify the ' begin , increment
will begin at the last line+10 increment will
4.

'Auto-Number' mode
a new logical line

required to remain

' the auto-numbering
be by 10's.

same line number
'Auto-Number' mode is exited if:

a. an existing statement is detected with the
as the next auto-number
b. the next auto-number is an invalid line number (ie. greater
than 32767)
c. a return is typed at the beginning of a logical line

5. You may use SOFTKEYS normally but you will be unable to define
SOFTKEYS while in the 'Auto-Number' mode. You must exit the
'Auto-Number' mode to define (or re-define a SOFTKEY). See
SOFTKEYS on page 6 of this booklet.

Example: AUTO 100

BASIC8 Utility Routines -11- VI. 2(8MAR84)

Binary LOAD

Command : BLOAD

Purpose : loads existing binary files (memory image) to memory

Form : BLOAD filename

Argument : a filename

Description

Binary image files may be loaded directly into memory with this
command, the files must be compatible with "normal" binary object
files that is

:

1. the first two bytes must be $FF, $FF
2. the next four bytes must be the start, stop addresses to load
into memory
3. the remainder of the file is the binary image to be loaded

Binary files may be loaded from either disk or cassette. Only
single step binary loads are supported. The number of bytes
transferred and the starting address (in decimal , hex form) will be
displayed

.

Example: BLOAD D0.COM
Count=76 , address=16384 , $4000

BASIC8 Utility Routines -12- VI .2(8MAR84)

Binary SAVE

Command

Purpose

Form

Arguments

Description

BS AVE

saves a portion of memory to a file (disk or cassette)

BSAVE filename, s tar taddr ess , stopaddress

a filename
s tar taddr ess
stopaddress

to start save
to stop save

A binary image of a portion of memory may be written to a file in
standard object file format that is:

1 . the first two
2. the next four
by the user
3. the remainder
being saved

bytes are $FF , $FF
bytes are the start, stop addresses (as typed in

of the file is the binary image of the memory

Binary files may be saved to either disk or cassette.

Example: BASVE D0.COM $4000,$404C

BASIC8 Utility Routines -13- VI. 2(8MAR84)

COPY

Command : COPY

Purpose

Form

Arguments

copies BASIC program statement(s) to another
sequence location

COPY begin, end, to (,by)

begin
end
to
by

begin range of BASIC statements to be copied
end range of BASIC statements to be copied
line number to start copied statements
optional, increment between copied lines
(defaults 1)

Description

The COPY command allows you to copy existing program statements to
another sequence location. Line numbers to within the copied block
of statements will be renumbered, all line number references to
lines not in the copied block of statements will be ignored. The
number of statements copied will be displayed upon completion. All
parameters are required except the 'by', default f by f equals one.

The COPY command can be used to move statements to different
sequence location. A possible procedure to accomplish this is
f ol lows

:

as

1. RENUMber the program leaving enough 'space' between
you wish to move the statements
2. COPY the statements to the new sequence location
3. FIND and modify statements refering to lines in the
location
4. DELete the old copied statements
5. RENUMber the program

lines where

old

Example: COPY 110,140,200,2
Count =4

BASIC8 Utility Routines -14- VI. 2(8MAR84)

DELete

Command DEL

Purpose deletes BASIC program statement(s)

Form DEL begin (, end

)

Arguments begin- begin range of BASIC statements to be deleted
end - optional, end range of BASIC statements to be

deleted (default= begin)

Description

The DELete command allows you to delete BASIC program statements. A
single line or a block of lines may be deleted.

The begin range must be an existing line number. The only
requirement for the optional end range is that it be greater than or
equal to the begin range.

Example

:

o r :

DEL
DEL

100, 120
1020

BASIC8 Utility Routines -15- VI. 2(8MAR84)

disk DIRectory

Command

Purpose

Form

Arguments

DIR

displays the disk directory

DIR (Dn:) (file-specifier)

Dn: - optional, disk device name/number,
default- "Dl:"

file-specifier- optional, any valid file name which may
contain ! wild-card T characters "?" and
"*", default- ff *.ft

-x-
11

Description

The DIRectory command displays all files on the current default disk
(as limited by the optional file-specifier). The default device is
modified if the given disk device name/number is specified. If the
file-specifier is given, all files matching the specifier will be
displayed to the screen. If you wish to select a file-specifier,
then you ust also give the disk device name/number.

Example: DIR D1:*.BAS
or: DIR

Note: if the device number is omitted from the disk name/number,
then the current default device is used (ie. DIR D:UTIL?.*)

BASIC8 Utility Routines -16- VI. 2(8MAR84)

DISKPEEK

Command

Purpose

Form

Arguments

Description

DISKPEEK

to read and display a sector from disk

DISKPEEK sector* (,disk dev#)

sectorl - disk sector number to read and display
disk devf- optional, disk device number, default= 1

The DISKPEEK command reads one 128 byte sector from disk device #1
(or as specified), then displays this inforamtion in hex and alpha
form. This command always reads 128 bytes (one sector) and stores
it at address $400 (1024).

This command may be used effectively with the STOR and DISKPOKE
commands. If you are patching a file or information on disk you may
DISKPEEK the sector, STOR new hex/alpha data then DISKPOKE the
sector back to disk.

Note that the File Manager is by-passed with this command. 'Normal 1

checks and file search routines are not used. The disk I/O is
handled by the resident disk handler in ROM. A single density disk
is assumed

.

Example: DISKPEEK $169

BASIC8 Utility Routines -17- VI. 2(8MAR84)

DISKPOKE

Command DISKPOKE

Purpose

Form

Arguments

to write a sector to disk, then display the data

DISKPOKE sector* (.disk dev#)

sector# - disk sector number to read and display
disk devl- optional, disk device number, default= 1

Description

The DISKPOKE command writes one 128 byte sector to disk device #1
(or as specified), then displays this inforamtion in hex and alpha
form. This command always writes 128 bytes of data from computer
memory starting at address $400 (1024) to the specified disk sector.

This command may be used effectively with the DISKPEEK and STOR
commands. If you are patching a file or information on disk you may
DISKPEEK the sector, STOR new hex/alpha data then DISKPOKE the
sector back to disk.

Note that the File Mana
checks and file search
handled by the resident
is assumed

.

ger is by-passed with
routines are not used
disk handler in ROM.

this command. 'Normal 1

The disk I/O is
A single density disk

CAUTION!

No checks are performed to determine if data is overwriting a
locked file, or even DOS. SYS! You could destroy the integrity
of the disk if you incorrectly modify sector#360 through 368
(the VTOC and Directory). For this reason any attempt to invoke
this command will prompt you with "Verify (Y/N)", to which you
must respond "Y" if you wish to perform this command.

Example: DISKPOKE 720
Verify (Y/N)

BASICS Utility Routines -18- VI. 2(8MAR84)

FIND

Command : FIND

Purpose : to locate all occurances of a given set of characters

Form : FIND "string" (begin) (,end) (,list)

Arguments : "string"- a delimeter, a set of characters to search
f or , a delimeter

begin - optional, begin range of BASIC statements
to be searched

end - optional, end range of BASIC statements
to be searched

list - optional, "0" (zero) means list lines found,
"1" (one) means list line numbers only,
default= 0

Description

The FIND command locates and lists the lines for all occurances of
the specified set of characters (as limited by begin, end ranges).
Note that if the 'list 1 parameter is specified as "1" then only line
numbers will be listed (not the whole line). The delimeter is
required and the end delimeter must match the begin delimeter. Any
character (except a blank) may be used as a string delimeter (ie. a
quote or the slant are both valid delimiters).

The string may be generalized to include the use of the 'wildcard*
character "*" (the "heart" symbolized here with an asterisk, hold
the CTRL key and strike the comma key). This wildcard character in
the string allows any character in that position to produce a match,
for example FIND /A(*)/ will find both A(l) and A(2) .

To prematurly abort the FIND command, press either the BREAK key or
one of the C0NS0L keys (ie. the START button).

Example: FIND /INF0$/
or: FIND "MYPMBASE" 1000,2000,1

BASIC8 Utility Routines -19- VI. 2(8MAR84)

FORMAT

Command : FORMAT

Purpose : formats a disk

Form : FORMAT Dn

Argument : Dn - disk device name/number

Description

The FORMAT command formats a disk so that it may be read from or
written to by programs.

CAUTION!

This command erases any previous data on a diskette. For this
reason any attempt to invoke this command will prompt you with
"Verify (Y/N)" to which you must respond "Y M if you wish to
perform the command.

Example: FORMAT Dl
Verify (Y/N)

BASIC8 Utility Routines -20- VI. 2(8MAR84)

HELP

Command HELP

Purpose displays available commands, functions or operators

Form HELP (type)

Argument type - optional, type
default* B

of help (ie. B,C,F or 0)

Description

The HELP command displays commands available with BASIC8. The
standard BASIC commands, functions and operators may also be
displayed

.

The types of HELP are as follows:
1. B - BASIC8 commands
2. C - BASIC commands
3. F - BASIC functions
4,0- BASIC operators

Example: HELP C

BASIC8 Utility Routines -21- VI. 2(8MAR84)

LOCK

Command : LOCK

Purpose : protect file(s) from erasure, writing or rename

Form : LOCK filename

Argument : a filename

Description

The LOCK command allows locking of all files matching the
file-specifier on the named disk device. These files will then be
shown with a preceding asterisk when a "DIR" command is issued.

Example: LOCK D1:UTIL.M65

BASIC8 Utility Routines -22- VI. 2(8MAR84)

MEMory display

Command MEM

Purpose displays the contents of
and alpha form
MEM (start)

128 bytes of memory in hex

Form

Argument start- optional
def ault=

, start a

last MEM
ddress in memory,
address+128 bytes

Description

The MEM command displays the contents of memory, 16 lines with 8
bytes per line for a total of 128 bytes. The form of each line
displayed is the hex address of the first byte in the line, the hex
contents of successive memory locations for 8 bytes. Then the
ATASCII character interpretation of the positionally corresponding
hex contents for 8 bytes. The form of the display is as follows:

When the MEM command is issued, you will remain in the 11MEM mode"
until the 'RETURN' key is typed. If the space bar is pushed (or any
other key except RETURN) the next 128 bytes of memory will be
displayed and you will still be in the "MEM mode". To exit the "MEM
mode" push the RETURN key.

Example: MEM $F0F1

addr
F0F9

hex-contents ATASCII

.

43 4F 4D 50 55 54 45 52 COMPUTER

BASICS Utility Routines -23- VI. 2(8MAR84)

PSCREEN

Command PSCREEN

Purpose : dumps the contents of screen memory to the printer
(GRAPHICS mode 0 only)

Form : PSCREEN (startrow) (,stoprow)

Arguments : startrow- optional, row# to start printing (0 to 23,
def ault=0)

stoprow - optional, rowf to stop printing (0 to 23,
default=23, must be>= startrow)

Description

The PSCREEN command "dumps" the contents of screen memory to the
printer. This command is useful for many of the BASIC8 commands to
obtain a f hardcopy f of the displayed information.

The PSCREEN command assumes graphics mode 0 (zero), furthermore it
assumes that the screen map is the 960 bytes located in memory
immediately below PEEK(106)*256 (this is the 'normal' location for
the screen map). This command reads 40 bytes of screen memory and
sends this to the printer followed with an end of line character
(EOL). It then checks to see if it is done printing, if not it
repeats the process. The EOL is printed only if location 1009
($3F1) equals one (initialized to 1 at boot time), if location 1009
is zero no EOL is printed. This is useful if you print to a 40
column printer such as the Atari 820(c).

Example: PSCREEN 0,18

BASIC8 Utility Routines -24- VI. 2(8MAR84)

PURGE

Command PURGE

Purpose removes file(s) from a diskette

Form PURGE filename

Argument a filename

Description

The PURGE command permanently removes files from a disk. All files
matching the file-specifier on the named disk device will be deleted
from the disk. The files will no longer be available for any file
access nor will they appear when a "DIR" command is issued.

Example: PURGE Dl : TEMP

BASIC8 Utility Routines -25- VI. 2(8MAR84)

RENAME

Command

Purpose

Form

Arguments

RENAME

renames file(s) to a new name

RENAME Dn:oldname,newname

Dn - disk name. number
oldname- file-specifier, present name of file(s)
newname- file-specifier, new name for file(s)

Description

The named disk is searched and all occurances of the oldname
file-specifier on that diskette are replaced with the newname
file-specifier

.

CAUTION!

No protection is provided against forming duplicate
file-specifiers. Be very careful using wildcards withe the
RENAME command.

Example: RENAME D : OB J . BIN , UTIL . COM

BASIC8 Utility Routines -26- VI. 2(8MAR84)

RENUMber

Command : RENUM

Purpose : to renumber BASIC program line numbers

Form : RENUM (begin) (, increment)

Arguments : begin - optional, begin line number for renumber,
default^ 10

increment- optional, increment between line numbers,
default= 10

Description

The RENUM command renumbers the BASIC program in memory, all lines
will be renumbered, all internal references will be renumbered also.

RENUM is not able to renumber references to lines which do not
exist, or to variable references (ie. GOTO N). When RENUM
encounters either of these two conditions the offending line
number(s) and the reason for the offense will be displayed to the
screen. An example of this is:

displayed: meaning

100NF : RENUM could Not Find a line referenced in line#100
260VR : RENUM found a Variable Reference in line#260

Any line number reference enclosed in parenthesis will be treated as
a variable reference. Variable references are not renumbered
however there is one exception to this. If a line number reference
is a number followed with an operator and an expression, in this
case the number WILL be renumbered and the 'normal 1 error message
for variable references will be generated.

NOTE!

During the process of RENUMbering an unresolved line number
reference may have become resolved (for instance: if a one line
program which consists of M 10 GOTO 100" is RENUMbered with the
command "RENUM 100" the program then becomes "100 GOTO 100" and
the unresolved referenced has become resolved).

CAUTION

!

Do NOT strike SYSTEM RESET while RENUMbering. If this is done
RENUM may have been interrupted before it was finished and
unresolved line number references may have been created.

Example: RENUM
or: RENUM 1000,100

BASIC8 Utility Routines -27- VI. 2(8MAR84)

SOFT

Command

Purpose

Form

Arguments

SOFT

loads (or saves) a SOFTKEY data file (disk/cassette)

SOFT filename (,SAVE)

a filename
SAVE - optional, indicates "SAVE" softkey file,

default- "LOAD"

Description

SOFTKEY files may be loaded
or cassette files with this
SOFTKEY files, that is:

directly
command

.

into memory, or
The files must

saved to disk
be compatible

1. the first two bytes must be $53, $53
2. the next four bytes must be the start, end address to load into
memory (the end address becomes LOMEM)
3. the remainder of the file is the binary image of the SOFTKEY
data (first 64 by tes=lengths , r emainder=li terals

)

SOFTKEY files may be loaded from either
single step binary loads are supported,
transfered and the starting address (in
displayed .

cassette or disk, only
The number of bytes
decimal , hex form) will be

Note, please refer to the SOFTKEY information on page 6 of this
booklet for using SOFTKEYS.

Example: SOFT D : KEYS , SAVE
or: SOFT D : KEYS

Count=94 , address=12642 , $3122

BASIC8 Utility Routines -28- VI. 2(8MAR84)

STORe memory

Command : STOR

Purpose : to store number(s) or a string directly to memory

Form : STOR startaddress map

Arguments : startaddress- the address in memory to begin storing
number(s) or character(s)

map - numbers (separated by commas if more
than one) or a string beginning with a
quotation mark

Description

The STOR command stores data directly to memory. If the map is a
string (begins with a quotation mark) then the characters will be
mapped to memory exactly as typed. If the map is a number (or
numbers) then the binary representation of that number will be
stored at f startaddress ' .

Example: STOR $400 "Copyright 1983 M . D. Pelletier"
or: STOR $421 $9B,155

BASIC8 Utility Routines -29- VI. 2(8MAR84)

UNLOCK

Command UNLOCK

Purpose removes the lock status 1 protection caused by the
LOCK command

Form UNLOCK filename

Argument a filename

Description

The UNLOCK command removes the write protection caused by the LOCK
command so that disk files may be erased, renamed or written to.
Any file matching the file-specifier on the named disk will be
affected .

Example: UNLOCK D:UTIL.*

BASIC8 Utility Routines -30- VI. 2(8MAR84)

VARiables displayed

Command VAR

Purpose displays active variable names, and total count

Form VAR

Arguments (none

)

Description

The VAR command displays all active variable names as well as the
quantity of variables. The sequence of the displayed variables is
the sequence in the variable value table.

Example: VAR
N,I,A$,B(
Coun t=4

BASIC8 Utility Routines -31- VI. 2(8MAR84)

ERROR CODES

Error Codes

NUMBER MEANING
30 missing required parameter
31 range empty (list or address range)
3 2 — (not used)—
33 incorrect file type (BLOAD fails)
34 lines won't fit in sequence at new location, COPY fails
35 attempt to copy to line within copy range, COPY fails

BASIC8 Utility Routines -32- VI. 2(8MAR84)

